A Simplified Variable Admittance Controller Based on a Virtual Agonist-Antagonist Mechanism for Robot Joint Control

نویسندگان

  • Xiaofeng Xiong
  • Florentin Wörgötter
  • Poramate Manoonpong
چکیده

In this paper, we propose a simplified variable admittance controller applied to robot joint control. It is based on a virtual agonist-antagonist mechanism (VAAM) consisting of contractile and parallel elements (CEs and PEs). ”Virtual” here means that every joint physically actuated by a standard servo motor can produce variably compliant motions as if it were driven by a pair of agonist and antagonist muscles. This makes it different from variable stiffness actuators (VSAs) with mechanically bulky and complex mechanisms. Moreover, the controller differs from other conventional PID admittance and variable admittance controllers since it only relies on force sensing at the end effector of robot rather than complex force/torque sensing of every joint. We have successfully implemented the controller on our hexapod robot which enables it to perform variable compliant behaviors, thereby reducing contact force and preventing leg damages when it is imposed with static or dynamical perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots

This paper presents a new intelligent method to control rehabilitation robots by mainly considering reactions of patient instead of doing a repetitive preprogrammed movement. It generates a general reference trajectory based on different reactions of patient during therapy. Three main reactions has been identified and included in reference trajectory: small variations, force shocks in a single ...

متن کامل

Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator

In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level du...

متن کامل

Virtual agonist-antagonist mechanisms produce biological muscle-like functions: An application for robot joint control

Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint motions. Design/methodology/approach – Each joint is driven by a pair of virtual agonist-antagonist ...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification

The neuromechanical control principles of animal locomotion provide good insights for the development of bio-inspired legged robots for walking on challenging surfaces. Based on such principles, we developed a neuromechanical controller consisting of a modular neural network (MNN) and of virtual agonist-antagonist muscle mechanisms (VAAMs). The controller allows for variable compliant leg motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013